
Extending A056154

Jonathan Frech
〈info@jfrech.com〉

2019-10-28

Abstract

In this paper I will present the results from an exhaustive search of natural
numbers n < 60 000 000 regarding membership in OEIS sequence A056154 writ-
ten in 1 155 lines of C, both verifying all previously known twelve members and
finding a new member,

A056154(13) = 49 094 174.

Definition of A056154

The On-Line Encyclopedia of Integer Sequences defines sequence A056154 as

“[n]umbers n such that the number of times each digit occurs in 2n,
represented in base 3, is the same as 2n+1, also represented in base 3.
Or in other words, when represented in base 3, the digits in 2n can
be rearranged to form 2n+1.”1

Currently known sequence terms are

A056154 = (5, 27, 40, 92, 138, 929, 1 086, 352 664, 4 976 816,

9 914 261, 23 434 996, 30 490 425, 49 094 174, . . .).

Machine

All calculations were performed on an Intel Core i7-4790K CPU at 4.00 GHz,
running 64-bit Linux Mint 19.2 Tina with 8 GB of RAM.
It took this machine 398 375 s ≈ 4.61 d to find the thirteenth sequence member
and a total of 600 853 s ≈ 6.95 d to complete the entire search.

1https://oeis.org/A056154

1

mailto:info@jfrech.com
https://oeis.org/A056154

Methodology

Since the sequence is defined by a property specific to base 3 on natural num-
bers that far exceed typical native number type ranges, I opted for an internal
representation tailored towards ternary inspection.
As an optimization, I chose a representation in base 3t where t ∈ N+, calculating
subsequent powers of two by iteratively doubling in a manner optimized for the
aforementioned representation, starting at 20 = 1. Digits in this representation
will be from now on referred to as “xits”.

To achieve further performance benefits, five parameters govern the search’s
approach:

parameter value range description

xit t {uint8 t, uint16 t,
uint32 t, uint64 t}

data type used for a single xit

xit carry t {uint8 t, uint16 t,
uint32 t, uint64 t}

data type used to compute
the sum of two xits

rit count t {uint8 t, uint16 t,
uint32 t, uint64 t}

data type used to count trits

threepow {1, 2, . . . , 16} power t determining the rep-
resentation

pass {--, --one pass} doubling algorithm uses two
passes or one pass

Note that larger exponents t > 16 are possible. However, since a lookup table
is created, the memory footprint quickly becomes unmanageable.

Without restrictions, there are 43 · 16 · 2 = 2048 possible combinations of the
above parameters, of which only 284 · 2 = 568 describe a valid computation.
All valid parameter combinations’ temporal performance was measured and
averaged over eight runs, each checking the first n < 10 000 natural numbers.
The three best and three worst performing parameter combinations were:

time xit t xit carry t rit count t threepow pass

0.0164 s uint32 t uint32 t uint32 t 11 --one-pass
0.0170 s uint32 t uint32 t uint64 t 11 --one-pass
0.0186 s uint16 t uint32 t uint32 t 10 --one-pass

.

0.4229 s uint64 t uint16 t uint64 t 1 --
0.4345 s uint8 t uint64 t uint32 t 1 --
0.4372 s uint8 t uint64 t uint64 t 1 --

Based on the above results, I chose the best performing parameter combina-
tion to run an exhaustive check on all natural numbers n < 60 000 000, even
though the relative performance ranking may change with regard to n. A possi-
ble improvement could be re-running above performance analysis and adapting
accordingly during the search.

2

Verification

Both 249 094 174 and 249 094 175 require the same number of the same trits:

trit #

‘0’ 10 323 527
‘1’ 10 325 258
‘2’ 10 326 191

Σ 30 974 976

When encoding trits with ASCII codes ‘0’ = 48, ‘1’ = 49, ‘2’ = 50 and appending
a newline ‘\n’ = 32, the corresponding MD5 hashes are as follows.

MD5(2pow49094174.ternary) = 528b5a45dce6d8fe1e110d83e4845958

MD5(2pow49094175.ternary) = c8817751f5db719324ca9917d2f0bd93

Due to the numbers’ size, printing their full ternary representation is not feasi-
ble. Therefore, only the first and last fifty trits will be given:

249 094 174 = 10100202200011112100212011010201112220000012202002 . . .

. . . 202220020022220011010112102122222210110210200110113

249 094 175 = 20201112100100001201201022021110002210000102111012 . . .

. . . 112210110122210022021001212022222120221121100220223

Since 339 · 2 < 264, the last thirty-nine trits were verified by computing

249 094 174 mod 339 and 249 094 175 mod 339

using a native 64-bit unsigned integer implementation.

Shortcomings

As already mentioned, an adaptive parameter search might lead to increased
performance. Furthermore, the current memory footprint can get unmanageable
if too many intermediate results are stored. Saving to disk also requires the
entirety of all computed data to be kept in memory at once, instead of being
implemented in a sequential manner.

Source

Source code and makefile needed to compile the binary used to perform the
search presented in this paper are hosted on papers.jfrech.com and licensed
under the MIT license:

• https://papers.jfrech.com/2019-10-28 jonathan-frech y
extending-a056154/source.tar

• https://papers.jfrech.com/2019-10-28 jonathan-frech y
extending-a056154/ternary-data.tar

3

https://papers.jfrech.com/
https://papers.jfrech.com/2019-10-28_jonathan-frech_extending-a056154/source.tar
https://papers.jfrech.com/2019-10-28_jonathan-frech_extending-a056154/source.tar
https://papers.jfrech.com/2019-10-28_jonathan-frech_extending-a056154/ternary-data.tar
https://papers.jfrech.com/2019-10-28_jonathan-frech_extending-a056154/ternary-data.tar

